Immunoblots of Markers of the Unfolded Protein Response: Method for Preparing Cytoplasmic and Nuclear Extracts

From Dr. Heather Harding of the laboratory of Dr. David Ron

Solutions:

 Harvest buffer:
 For 50ml:

 10 mM HEPES pH 7.9
 0.5 ml 1 M HEPES

 50 mM NaCl
 0.5 ml 5 M NaCl

 0.5 M Sucrose
 8.56 g sucrose

 0.1 mM EDTA
 10 μl 0.5 M EDTA

 0.5% Triton-X100
 2.5 ml 10% Triton-X100

*freshly add to harvest buffer just before use:

1 mM DTT

10 mM tetrasodium pyrophosphate

100 mM NaF

17.5 mM β-glycerophosphate

1 mM PMSF

4 μg/ml Aprotinin

2 μg/ml Pepstatin A

 Buffer A:
 For 50ml:

 10 mM HEPES pH 7.9
 0.5 ml 1 M HEPES

 10 mM KCL
 250 μl 2 M KCL

 0.1 mM EDTA
 10 μl 0.5 M EDTA

 0.1 mM EGTA
 10 μl 0.5 M EGTA

Freshly add to buffer A just before use:

1 mM DTT

1 mM PMSF

4 μg/ml Aprotinin

2 μg/ml Pepstatin A

Buffer C:	For 50ml 1X:	for 50ml 2X
10 mM HEPES pH 7.9	0.5ml 1 M HEPES	1 ml 1 M HEPES
500 mM NaCl	5 ml 5 M NaCl	10 ml 5 M NaCl
0.1 mM EDTA	10 µl 0.5 M EDTA	20 μl 0.5 M EDTA
0.1 mM EGTA	10 µl 0.5 M EGTA	20 μl 0.5 M EGTA
0.1% IGEPAL(NP40)	500 µl 10% IGEPAL	1 ml 10% IGEPAL

Freshly add to buffer C just before use:

1 mM DTT

1 mM PMSF

4 μg/ml Aprotinin

2 μg/ml Pepstatin A

Ice cold PBS and PBS-1mM EDTA

Method:

- •Place plates on ice.
- •Wash 2X with cold PBS.
- •Add 1 ml PBS-EDTA and scrape cells. Transfer to 1.5ml tube.
- •Pellet at 3000 rpm for 5 min.
- •Resuspend in 250-500 µl (at least 6 vol) of Harvest buffer.
- •Incubate on ice for 5 min.
- •Pellet at 1000 rpm in a table top swinging bucket rotor (for example by resting microfuge tubes in 15ml tubes while spinning) for 10 min to pellet nuclei @ 4°C (preferable). Alternatively spin in a fixed angle rotor at 2000 rpm. Note that the nuclei sometimes smear up the side of the tube in the fixed angle rotor.
- •Transfer supernate to new tube. For best results, clear at 14,000 rpm for 15 min. and transfer supernate to new tube = "Cytoplasmic/membrane extract".

 Save for PERK or IRE IP or eIF2α western.
- •Wash/resuspend nuclear pellet in 500 μl buffer A (optional).
- •Pellet at 1000 rpm in swinging bucket rotor 5 min 4°C.
- •Remove and discard sup.
- •Add 4X vol <u>buffer C.</u> (For a more concentrated extract use 2 vol buffer C made with 1M NaCl.)
- •Vortex 15 min at 4°C. (in cold room) Start on high speed vortex to loosen pellet, then turn to medium.
- •Pellet at 14,000 rpm 10 min 4°C.
- •Transfer sup to new tube = "Nuclear extract".

If nuclear extract will be used for functional assays such as gel shift (EMSA), then 10% glycerol should be added prior to freezing.

Measure protein concentrations of cytoplasmic and nuclear extracts.

Load ~40-50 μ g of nuclear extract for XBP1, ATF4 and CHOP Western (20 μ g is enough for many cell types, but loading more is better.)

Load 25-40 μg of cytoplasmic extract for Phospho-eIF2 α Western.

Use 500-1500 μg of cytoplasmic extract for PERK or IRE immunoprecipitation followed by Western (the more the better).

Antibodies for Immunoblots:

Antibody	MW of protein	Source	Dilution
CHOP	29 kD	rabbit	1:5000
XBP-1	54 kD	rabbit	1:2000
PERK	125 kD*	rabbit	1:1000-3000
IRE1	110 kD*	rabbit	1:1000-3000
ATF4	42 kD	rabbit	1:3000

^{*}phosphorylated forms migrate slightly slower on gel