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SUMMARY

Defective insulin signaling in hepatocytes is a key
factor in type 2 diabetes. In obesity, activation
of calcium/calmodulin-dependent protein kinase II
(CaMKII) in hepatocytes suppresses ATF6, which
triggers a PERK-ATF4-TRB3 pathway that disrupts
insulin signaling. Elucidating how CaMKII sup-
presses ATF6 is therefore essential to understanding
this insulin resistancepathway.We show thatCaMKII
phosphorylates and blocks nuclear translocation of
histone deacetylase 4 (HDAC4). As a result, HDAC4-
mediated SUMOylation of the corepressor DACH1
is decreased, which protects DACH1 from proteaso-
mal degradation. DACH1, together with nuclear re-
ceptor corepressor (NCOR), represses Atf6 tran-
scription, leading to activation of the PERK-TRB3
pathway and defective insulin signaling. DACH1 is
increased in the livers of obese mice and humans,
and treatment of obese mice with liver-targeted
constitutively nuclear HDAC4 or DACH1 small hairpin
RNA (shRNA) increases ATF6, improves hepatocyte
insulin signaling, and protects against hyperglycemia
and hyperinsulinemia. Thus, DACH1-mediated core-
pression in hepatocytes emerges as an important link
between obesity and insulin resistance.
INTRODUCTION

Excessive hepatic glucose production (HGP) and aberrant insu-

lin receptor signaling are the major causes of hyperglycemia and

insulin resistance in obesity-induced type 2 diabetes (T2D) (Paj-

vani and Accili, 2015). We have recently identified activation of

hepatocyte (HC) CaMKII/p38 as a major contributor to aberrant

HGP and perturbed insulin signaling in obesity (Ozcan et al.,

2012, 2013). Treatment of obese mice with a drug inhibitor of

the pathway lowers plasma glucose and corrects hyperinsuline-
This is an open access article under the CC BY-N
mia and is additive in these benefits with the current leading

T2D drug, metformin (Ozcan et al., 2015). The CaMKII pathway

in HCs perturbs metabolism by lowering the transcription factor

ATF6, which can function as a homeostatic regulator of the

endoplasmic reticulum stress response by inducing the chap-

erone, p58IPK (Wu et al., 2007). As such, the decrease in ATF6

in obese HCs activates the PERK-ATF4 arm of the ER stress

response, which induces an inhibitor of insulin receptor signaling

called TRB3. In support of the key role of HC ATF6 in the CaMKII

pathway as a driver of perturbed metabolism in obesity, both to-

tal and nuclear (cleaved) ATF6 are decreased in obesemice liver,

and in human liver, ATF6 cleavage decreases in relation to ho-

meostatic model assessment of insulin resistance (HOMA-IR)

(Kumashiro et al., 2011; Wang et al., 2009). Moreover, ATF6

overexpression in cell culture models improves insulin signaling,

although the underlying mechanisms have not been fully

explored (Tang et al., 2011; Ye et al., 2010). ATF6 can also sup-

press HGP by disrupting the interaction of two gluconeogenic

transcription factors, CREB and CRTC2, and restoration of

ATF6 levels in the livers of obese mice lowers blood glucose

(Wang et al., 2009).

Given the importance of CaMKII-mediated ATF6 suppression

in HCs in linking obesity to T2D, a key question relates to the

molecular mechanism through which CaMKII suppresses

ATF6. We show here that the corepressor DACH1 is responsible

for suppressing Atf6. DACH1 levels are increased in obesity by

CaMKII-induced nuclear exclusion of HDAC4, which decreases

HDAC4-mediated SUMOylation and degradation of DACH1.

Accordingly, insulin sensitivity can be improved in obese mice

by silencing either CaMKII or DACH1 or enforcing nuclear

HDAC4 in HCs, without any change in food intake or body

weight. These results identify DACH1 as a critical component

of defective insulin action seen in obesity.

RESULTS

ATF6 Overexpression in Obese Mice Improves Insulin
Sensitivity
While our previous work implicated suppression of ATF6 as a key

mechanism of how CaMKII activation in HCs promotes insulin
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resistance inobesity (Ozcanetal., 2013),weaskedwhether genet-

ically boosting hepatic ATF6 in obesity could improvemetabolism.

To this end,we treated diet-inducedobese (DIO)micewith adeno-

viral vectorsencodingcleaved,nuclearATF6 (ATF6N)orLacZcon-

trol. Adeno-ATF6N-treated mice had lower fasting blood glucose

and lower plasma insulin levels and enhanced reduction of blood

glucose in response to insulin stimulation (Figures S1A and S1B)

in the absence of any change in bodyweight. Adeno-ATF6N treat-

ment also improved acute insulin-induced p-Akt (Figure S1C),

which is a dynamic measure of improved insulin signaling.

CaMKII Suppresses HC Atf6 mRNA in Obesity
Given thecritical roleofATF6 inCaMKII-mediated improvement in

insulin signaling, we next investigated whether CaMKII regulates

ATF6 at the transcriptional level. For this purpose, we first

analyzed the livers of Camk2gfl/fl obese mice treated with control

AAV-TBG-LacZ versus AAV-TBG-Cre, which specifically deletes

CaMKII in HCs and thereby increases insulin sensitivity (Ozcan

et al., 2013). The livers of obese mice with HC-deleted CaMKII

had higher Atf6 mRNA levels than the livers of the control

obese mice (Figure S1D). We then isolated primary HCs from

Camk2gfl/fl mice and treated them ex vivo with adeno-Cre to

deleteCaMKII orwithadeno-LacZcontrol, followedby incubation

with BSA (control) or palmitate. Palmitate mimics features of HC

pathophysiology seen in obesity (Boden et al., 2005), including

defective insulin signaling (Ozcan et al., 2013). We first confirmed

the increase in Atf6 mRNA in palmitate-treated CaMKII-defi-

cient HCs (Figure S1E) and then conducted Atf6 promoter chro-

matin immunoprecipitation (ChIP) assays. CaMKII-deficient HCs

showed increased Atf6 promoter occupancy of both RNA poly-

merase II (Pol II) and H3K27ac, a histone mark associated with

active gene transcription (Wang et al., 2008) (Figure S1F). In sum-

mary, hepatic CaMKII activation in obese mice suppresses Atf6

transcription, and restoring hepatic ATF6 through genetic engi-

neering improves metabolic health.

Obesity Induces HDAC4 Phosphorylation and Regulates
Its Nuclear Localization
The data above raise the key issue of how hepatic CaMKII

lowersAtf6 transcription in obesity. Previouswork has implicated

CaMKII in transcriptional regulation through its ability to phos-

phorylate and promote the nuclear export of the class IIa histone

deacetylase HDAC4 (Backs et al., 2006; Zhang et al., 2007). The

possible relevance of CaMKII-induced phosphorylation and nu-

clear export of HDAC4 in obese mouse liver was suggested by

the results of several experiments. First, phosphorylation of

HDAC4 on Ser465 and Ser629 (corresponding to Ser467 and

Ser632 in human HDAC4), two CaMKII phosphorylation sites

(Backs et al., 2006), was significantly increased in the livers of

obese mice compared with lean mice (Figure 1A). Second, in

the livers of obese mice, nuclear HDAC4 levels were lower and

cytoplasmic levelswerehigher (Figure1B). Third andmost impor-

tantly, liver-CaMKIIg deficiency or CaMKII inhibition markedly

decreased p-Ser465 and p-Ser629-HDAC4 and promoted

HDAC4 nuclear localization in the livers of obese mice (Figures

1C and 1D). Palmitate-treated CaMKII-deficient HCs also

showed increased nuclear HDAC4 compared to HCs from

control mice (Figure 1E). To determine causation, we silenced
2 Cell Reports 15, 1–12, June 7, 2016
HDAC4 in CaMKII-deficient HCs using small interfering RNA

(siRNA) and found that this lowered Atf6 and its downstream

target, Dnajc3 (P58IPK), and abrogated the improvement in insu-

lin-Akt signaling in CaMKII-deficient HCs upon palmitate treat-

ment (Figures 1F and 1G). We then tested causation in vivo by

silencing HDAC4 in DIO mice and found increased fasting blood

glucose and plasma insulin levels and reduced glucose-disposal

curves post-insulin (Figure S2) without a change in body weight.

These data provide initial support for the role of an obesity-driven

CaMKII-HDAC4 nuclear exclusion pathway in ATF6 suppression

and defective insulin signaling in HCs.

To further establish causation, we took advantage of a phosp-

horylation-defective, constitutively nuclear HDAC4 mutant,

HDAC4S3A (S246A/S467A/S632A) (Backs et al., 2006). Trans-

fection of primary HCs with a relatively low titer of this mutant

increased Atf6 and Dnajc3 mRNA levels and improved insulin-

induced p-Akt after palmitate treatment (Figures 2A and 2B;

compare white and black bars). To test the functional role of

ATF6 in this improvement, we silenced Atf6 in palmitate-treated

HDAC4S3A-overexpressing HCs using siRNA and found that

this treatment lowered Dnajc3 and reduced insulin-induced

p-Akt to the level of palmitate-treated control HCs (Figures 2A

and 2B; compare black and gray bars). We then treated DIO

micewith adenoviral vectors encoding themutant HDAC4 versus

LacZ control. Adeno-HDAC4S3A-treated mice had lower fasting

blood glucose and lower plasma insulin levels in the absence of

any change in body weight (Figures 2C and 2D). To link these

findings to hepatic insulin signaling, we assayed p-Akt in the

livers of mice injected with insulin through the portal vein. Similar

to the case with palmitate-treated HCs, there was enhanced

insulin-stimulated Akt phosphorylation in the livers of adeno-

HDAC4S3A-treated DIO mice (Figure 2E). Finally, acetylation of

the key gluconeogenic transcription factor FoxO1, which sup-

presses its binding to DNA target sites, was shown to be

increased in HCs and in the liver of lean mice with combined

silencing of HDAC4, HDAC5, and HDAC7 (Mihaylova et al.,

2011). However, we found that when hepatic HDAC4 alone was

either silenced or rendered constitutively nuclear (HDAC4S3A)

in obese mice, the level of acetylated FoxO1 in the liver was not

altered (Figure S2F). These collective data indicate the presence

of a CaMKII / HDAC4 phosphorylation/nuclear exclusion /

ATF6 suppression pathway in obese liver, resulting in perturbed

hepatic insulin signaling and disturbed glucose homeostasis.

Nuclear Exclusion of HC HDAC4 in Obesity Elevates
Nuclear DACH1, a Corepressor that Lowers Atf6 and
Promotes Insulin Resistance
We next turned our attention to the mechanism of how HDAC4

could induce Atf6 transcription. Because HDAC4 usually re-

presses gene transcription (Parra, 2015), we considered the pos-

sibility that HDAC4 repressed an Atf6 gene repressor. Indeed,

previous studies in skeletal muscle identified a transcriptional

repressor called Dachshund homolog (DACH) as a target of

HDAC4-mediated repression (Tang and Goldman, 2006; Tang

et al., 2009). Thus, we hypothesized that nuclear exclusion of

HDAC4 in HCs in obesity would result in the de-repression of

DACH1, which would then repress Atf6. We first asked whether

hepatic DACH1 is increased in obesity. DACH1 levels were
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Figure 1. Obesity Promotes CaMKII-Mediated Phosphorylation and Nuclear Exclusion of HDAC4, Leading to Defective Insulin Signaling

in HCs

(A) Top blot: p-Ser465-HDAC4, HDAC4, and b-actin were assayed in liver extracts of lean (wild-type [WT]) and ob/ob mice. Bottom blot: p-Ser629-HDAC4 and

b-actin were assayed in liver extracts of lean (chow-fed) and DIO mice.

(B) Liver extracts of lean (chow-fed) and DIOmicewere assayed by immunoblot for nuclear HDAC4 and nucleophosmin (Np) (top blot) and for cytoplasmic HDAC4

and b-actin (bottom blot).

(C) p-Ser465-HDAC4, HDAC4, and b-actin were assayed in liver extracts of ob/ob mice treated with adeno-LacZ or adeno-K43A-CaMKII (top blot), and

p-Ser629-HDAC4 and b-actin were assayed in liver extracts of DIO Camk2gfl/fl mice treated with AAV8-TBG-LacZ or AAV8-TBG-Cre (bottom blot).

(D) Liver extracts of DIOCamk2gfl/flmice treatedwith AAV8-TBG-LacZ or AAV8-TBG-Crewere assayed for nuclear HDAC4 and nucleophosmin (Np) (top blot) and

for cytoplasmic HDAC4 and b-actin (bottom blot).

(E) Primary HCs from Camk2gfl/fl mice transduced with adeno-LacZ or adeno-Cre were incubated with 0.3 mM palmitate for 4 hr, and then nuclear and cyto-

plasmic lysates were assayed for HDAC4, nucleophosmin (Np), and b-actin.

(F) HCs from Camk2gfl/fl mice were pretreated with either scrambled RNA (scr) or siRNA targeting HDAC4 (si-HDAC4) for 12 hr and then transduced with adeno-

LacZ or adeno-Cre. After an additional 24 hr, the cells were incubated with 0.3 mM palmitate for 11 hr, with the last 5 hr in serum-free media. The cells were then

assayed for Atf6 and Dnajc3 mRNA by qRT-PCR (n = 3; bars with different symbols are different from each other and control, mean ± SEM, p < 0.05).

(G) As in (F), except that some of the cells received BSA control instead of palmitate and were then treated with PBS control or 100 nM insulin for 5 min, as

indicated by the minus and plus symbols. Cell lysates were then assayed for p-Akt and total Akt. Densitometric quantification of the immunoblot data is shown in

the bar graph (n = 3; bars with different symbols are different from each other and control, mean ± SEM, p < 0.05).

See also Figure S1.
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indeed increased in the livers of both DIO and ob/ob mice

compared with lean controls (Figure 3A, top; Figure S3A).

Because DACH1 protein is predominantly nuclear (Mardon

et al., 1994), we next checked nuclear DACH1 and found that

nuclear DACH1 was also increased in obese versus lean mouse
liver (Figure 3A, bottom). Moreover, this increase in hepatic

DACH1was significantly suppressed in obesemice in which liver

CaMKII was deleted or inhibited (Figures 3B andS3B) or in obese

mice subjected to treatment with adeno-HDAC4S3A to enforce

nuclear HDAC4 (Figure 3C, top). Conversely, silencing hepatic
Cell Reports 15, 1–12, June 7, 2016 3
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Figure 2. Constitutively Nuclear HDAC4S3A Increases Atf6, Dnajc3, and Insulin-Stimulated p-Akt and Improves Metabolism in DIO Mice

(A) Primary HCs from wild-type (WT) mice were pretreated with either scrambled RNA (scr) or siRNA targeting ATF6 (siATF6) for 12 hr followed by transduction with

adeno-LacZor adeno- HDAC4S3A.After an additional 24 hr, the cells were incubatedwith 0.3mMpalmitate for 11 hr,with the last 5 hr in serum-freemedia. The cells

were then assayed for Atf6 and Dnajc3mRNA by qRT-PCR (n = 3; bars with different symbols are different from each other and control, mean ± SEM, p < 0.05).

(B) As in (A), except that some of the cells received BSA control instead of palmitate and were then treated with PBS control or 100 nM insulin for 5 min, as

indicated by the minus and plus symbols. Cell lysates were then assayed by immunoblot for p-Akt, total Akt and b-actin. Densitometric quantification of the

immunoblot data is shown in the bar graph (n = 3; bars with different symbols are different from each other and control, mean ± SEM, p < 0.05).

(C and D) Fasting blood glucose and plasma insulin levels in DIOmice treated with adeno-LacZ or adeno- HDAC4S3A (n = 6mice/group; mean ± SEM, *p < 0.05).

(E) DIO mice treated with adeno-LacZ or adeno- HDAC4S3A were fasted for 5 hr and then injected with 1.5 IU/kg insulin through the portal vein for 3 min. Liver

extracts were assayed for p-Akt and total Akt (top blot), with densitometric quantification of the data shown in the bar graph (n = 5; mean ± SEM, *p < 0.05). The

lower blot shows the expression level of nuclear HDAC4 in the two groups of mice.

See also Figure S2.
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HDAC4 in obese mice further increased hepatic DACH1, sug-

gesting that DACH1 lies downstream of HDAC4 (Figure 3C,

bottom). We also tested the effect of CaMKII inhibition in

metabolism-qualified primary human HCs and found that

DACH1 was increased by palmitate treatment and that this in-

crease was prevented by inhibition of CaMKII using adeno-

K43A-CaMKII (Figure S3C). Furthermore, analysis of 14 human

liver biopsy specimens spanning body-mass indexes (BMIs)

from 19 to 62 showed an overall trend for higher levels of

DACH1 and p-Ser632-HDAC4 in the livers of obese versus

leaner subjects (Figure 3D).

We next tested the importance of DACH1 in the regulation of

the ATF6–TRB3-insulin signaling pathway using wild-type (WT)

versus DACH1-deficient HCs treated with or without palmitate.

For this experiment, we used primary HCs isolated from

Dach1fl/fl mice and then treated the cells ex vivo with adeno-

Cre or control adeno-LacZ. The data show that Atf6 mRNA

was significantly higher and Trb3 mRNA was significantly lower
4 Cell Reports 15, 1–12, June 7, 2016
in DACH1-deficient HCs (Figure 3E). Most importantly, DACH1

deficiency resulted in prevention of palmitate-induced suppres-

sion of insulin-induced p-Akt (Figure 3F).

To test the functional importance of DACH1 in glucose meta-

bolism in obesity, we silenced hepatic DACH1 in DIO mice using

adeno-associated virus-8 (AAV8)-mediated small hairpin RNA

(shRNA) (Lisowski et al., 2014). This treatment, which lowered

hepatic DACH1 levels by �70% (Figure 4D) without a change

in body weight, significantly lowered fasting blood glucose and

plasma insulin (Figure 4A). DACH1 silencing also lowered plasma

glucose in response to pyruvate challenge, which is ameasure of

HGP; improved the blood glucose response to glucose chal-

lenge; and enhanced reduction of blood glucose in response

to insulin stimulation (Figures 4B and 4C). Consistent with our

in vitro data, we observed increases in both Atf6 mRNA and in-

sulin-stimulated Akt phosphorylation and a significant decrease

in Trb3 mRNA levels in the DACH1-silenced DIO cohort (Figures

4D and 4E). Similar results were found in DIO Dach1fl/fl mice
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Figure 3. Hepatic DACH1 Is Increased in Obesity via CaMKII Activation and Nuclear Exclusion of HDAC4, Leading to Defective Insulin

Signaling in HCs

(A) Extracts of total liver (top blot) and liver nuclei (bottom blot) from WT mice fed a chow or DIO diet for 12 weeks were assayed for DACH1, b-actin, and

nucleophosmin (Np) by immunoblot.

(B) DACH1 and b-actin were assayed in liver extracts from ob/ob mice treated with adeno-LacZ or adeno-K43A-CaMKII.

(C) DACH1 and b-actin were assayed in livers from DIO mice treated with adeno-LacZ or adeno-HDAC4S3A (top blot) or DIO mice treated with adeno-LacZ or

adeno-sh-HDAC4 (bottom blot).

(D) DACH1, b-actin, p-Ser632-HDAC4 and HDAC4 were assayed in liver extracts from human subjects with the indicated BMIs.

(E) HCs fromDach1fl/flmice were transduced with adeno-LacZ or adeno-Cre. After 36 hr, cells were incubated with 0.3 mM palmitate for 11 hr, with the last 5 hr in

serum-free media. Cells were then assayed for Dach1, Atf6, and Trb3 mRNA (n = 3; mean ± SEM, *p < 0.05).

(F) As in (E), except that some of the cells received BSA control instead of palmitate and were then treated with PBS control or 100 nM insulin for 5 min, as

indicated by the minus and plus symbols. Cell lysates were then assayed for p-Akt, total Akt, and b-actin.

See also Figure S3.
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injected with AAV-8 encoding Cre recombinase driven by the

HC-specific thyroxin binding globulin promoter (TBG-Cre) (Fig-

ure S4). These data are consistent with the hypothesis that he-

patic DACH1 depletion improves glucose metabolism in obese

mice by increasing hepatic insulin sensitivity.

DACH1 has a highly conserved N-terminal DACHBox domain,

which shares �35% amino acid identity to the Ski/Sno proteins

and is therefore known as the DACH Ski/Sno (DS) domain (Li

et al., 2002; Wu et al., 2003). The DS domain mediates the inter-

action of DACH1 with both DNA and other corepressors and is

required for the ability of DACH1 to repress a number of genes

(Sundaram et al., 2008; Wu et al., 2003, 2008). Accordingly, an

engineered mutant of DACH1 in which the DS domain is deleted

(DDS-DACH1) has been shown to act in a dominant-negative

manner in blocking DACH1 gene repression (Sunde et al.,

2006). As a further test of the importance of DACH1 in liver meta-
bolism, we treated obese mice with adeno-DDS-DACH1 versus

adeno-LacZ control. The DDS-DACH1 cohort had lower fasting

blood glucose, lower plasma insulin levels, improved blood

glucose response to glucose challenge, and enhanced reduction

of blood glucose upon insulin stimulation, all without a change in

body weight (Figures S5A–S5D). Adeno-DDS-DACH1 treatment

also improved insulin-induced p-Akt and raised the level of

P58IPK (Figure S5E). Similar results were obtained using ob/ob

mice (Figure S6). These results further support the role of

DACH1 in glucose homeostasis in obesity and indicate that the

DS domain of DACH1 is required for this effect.

DACH1 Silencing Improves Glucose Metabolism in
Obese Mice by Increasing ATF6
To test whether the metabolic improvement seen with hepatic

DACH1 deficiency was dependent on the increase in ATF6, we
Cell Reports 15, 1–12, June 7, 2016 5
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Figure 4. Silencing Hepatic DACH1 in Obese Mice Improves Glucose and Insulin Metabolism

(A–C) Fasting blood glucose and plasma insulin levels (A) and pyruvate, glucose, and insulin tolerance tests (B and C) in DIO mice after treatment with AAV8–sh-

DACH1 or empty AAV (AAV8-con) (n = 6–7 mice/group; mean ± SEM, *p < 0.05).

(D) DIOmice were treated with AAV8-sh-DACH1 or empty AAV (AAV8-con). After 14 days, themice were fasted for 5 hr and injected with insulin through the portal

vein, followed 3min later by harvesting of liver. Liver extracts were assayed for p-Akt, total Akt, DACH1, and b-actin by immunoblot. Densitometric quantification

of the immunoblot data is shown in the graph (n = 4–5; mean ± SEM, *p < 0.05).

(E) As in (D), except that Atf6 and Trb3 mRNA levels were assayed by qRT-PCR (n = 5; mean ± SEM, *p < 0.05).

See also Figures S4–S6.
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silenced hepatic ATF6 in liver-DACH1-deficient obese mice

using adeno-sh-ATF6 (Wang et al., 2009). The results show

that all of the beneficial effects of DACH1 silencing—decreased

blood glucose and plasma insulin, improved blood glucose

response to glucose challenge, enhanced reduction of blood

glucose in response to insulin, and increased insulin-induced

p-Akt in liver—were abrogated by also silencing hepatic ATF6

(Figures 5A–5D). These data provide further evidence that he-

patic DACH1 depletion improves insulin sensitivity and glucose

metabolism in obese mice by de-repressing ATF6.

Recent work has identified a consensus DACH1 DNA-bind-

ing sequence using genome-wide in silico promoter analysis

together with cyclic amplification and selection of targets (Zhou

et al., 2010). Using this information, we identified an intronic re-

gion (intron 14) and an exon (exon 16) in theAtf6gene that contain

DACH1 consensus sequences. ChIP analysis in GFP-DACH1-
6 Cell Reports 15, 1–12, June 7, 2016
transfected primary HCs showed significantly increased recruit-

ment of DACH1 to both of these regions (Figures 6A, left graph,

and 6B), whereas a control segment at the 30 end of the Atf6

gene gave no signal (not shown). Moreover, in view of the fact

that corepressors bind to enhancer sites to suppress gene tran-

scription, we found through additional ChIP experiments that the

intronic site was enriched for two enhancer marks, histone H3

lysine 4 monomethylation (H3K4me1) and H3K27 acetylation

(H3K27Ac) (Heintzman et al., 2007) (Figure 6A, middle and right

graphs). We also observed significantly increased recruitment

of DACH1 to the identified intronic and exonic regions in obese

liver compared with lean liver, whereas a control segment

(Rplp0) gave no signal (Figure 6C).

In view of previous work showing that DACH1 can interact

with nuclear receptor corepressor (NCOR) to repress genes

(Wu et al., 2003), we tested the interaction between DACH1
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Figure 5. Improvement in Glucose Homeostasis by Hepatic DACH1 Silencing Is Abrogated by Also Silencing ATF6

(A–C) WT DIO mice were treated with AAV8-sh-DACH1 or AAV8-con. After 3 days, half of the AAV8-sh-DACH1mice received adeno-sh-Atf6, while the other half

received adeno-LacZ. After an additional 5 days, fasting blood glucose and plasma insulin levels were assayed, and glucose and insulin tolerance tests were

conducted (n = 6 mice/group; mean ± SEM, p < 0.05).

(D) WT DIO mice were treated as in (A)–(C). After 14 days, the mice were fasted for 5 hr and injected with insulin through the portal vein, followed 3 min later by

harvesting of liver. Total liver extracts were assayed for p-Akt, total Akt, and b-actin (top blot), and nuclear extracts were assayed for ATF6 and nucleophosmin

(Np) (bottom blot).
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and NCOR. We observed that NCOR could be coimmunopreci-

pitated with DACH1 in liver from obese, but not lean, mice, sug-

gesting that DACH1 and NCOR physically interact in the setting

of obesity (Figure 6D). Consistent with the data in Figure 3A,

very little DACH1 could be immunoprecipitated from lean liver.

Moreover, ChIP analysis revealed the presence of NCOR on

the intronic region where DACH1 binds Atf6, and this ChIP signal

was markedly diminished in DACH1-deficient cells (Figure 6E).

As further evidence, we showed that AAV8-sh-NCOR-treated

obese mice had higher hepatic Atf6 mRNA levels compared

with control mice (Figure 6F). These combined data are consis-

tent with a model in which DACH1-NCOR complex binds to

DACH1 consensus sites in the Atf6 gene in hepatocytes in the

setting of obesity and represses Atf6.

HDAC4-Mediated DACH1 SUMOylation Leads to Its
Degradation
To elucidate the molecular mechanism of DACH1 suppression

by nuclear HDAC4, we first analyzed the livers of obese mice

treated with adeno-LacZ versus adeno-HDAC4S3A and found
no decrease in Dach1 mRNA in the HDAC4S3A cohort (Fig-

ure S7A). Similar results were obtained using palmitate-treated

control versusHDAC4S3A-transfectedprimaryHCs (FigureS7B).

Using theHCmodel, we then explored the possibility that nuclear

HDAC4 increases the proteasomal degradation of DACH1 pro-

tein. Consistent with this idea, the proteasome inhibitor MG132

partially prevented the decrease in DACH1 protein conferred by

HDAC4S3A transfection (Figure 7A).

HDAC4canactasanE3 ligase that affectsproteinSUMOylation

(Grégoire andYang, 2005;Zhaoetal., 2005),which in turncanpro-

mote ubiquitination and proteasomal degradation of SUMOylated

proteins (Miteva et al., 2010). To addresswhether a SUMOylation-

dependent pathway was involved in the HDAC4-mediated sup-

pression of DACH1, we first asked whether endogenous DACH1

getsSUMOylated. In palmitate-treatedHCs, immunoprecipitation

and western blot analysis revealed that DACH1 SUMOylation oc-

curs and is diminished upon palmitate treatment, concomitant

withan increase inDACH1protein (Figure7B).Weobtainedsimilar

results when we overexpressed DACH1 in HCs (Figures 7C and

S7C). Moreover, when we silenced the E2-conjugating enzyme
Cell Reports 15, 1–12, June 7, 2016 7
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Figure 6. DACH1-NCOR Complex Represses Atf6

(A) Primary HCs from WT mice were transfected with an expression plasmid encoding GFP-DACH1. After 48 hr, the cells were incubated with 0.3 mM palmitate

for 3 hr, and then ChIP was performed using anti-GFP, anti-H3K4me1, anti-H3K27Ac, or immunoglobulin G (IgG) control antibodies. The region spanning a

specific intron site containing a predicted DACH1-binding sequence (intron 14) was amplified by qRT-PCR and normalized to the values obtained from the input

DNA (n = 3; mean ± SEM, *p < 0.05).

(B) Same as (A), except that region spanning a specific exon site containing a predicted DACH1-binding sequence (exon 16) was amplified by qRT-PCR and

normalized to the values obtained from the input DNA (n = 3; mean ± SEM, *p < 0.05).

(C) ChIP was performed from liver extracts of lean and DIO mice with anti-DACH1 or IgG control antibodies. The region spanning specific intron and exon sites

containing predicted DACH1-binding sequences (intron 14 and exon 16, respectively) and a non-specific region (Rplp0) were amplified by qRT-PCR and

normalized to the values obtained from the input DNA (n = 3; mean ± SEM, *p < 0.05).

(D) DACH1 was immunoprecipitated (IP) from liver extracts and then probed for NCOR or DACH1 by immunoblot (B). Lanes 1–3 are lean mice, and lanes 4–8 are

DIOmice. All DIOmicewere treatedwith AAV8-con, except for lane 7, whichwas treatedwith AAV8-sh-DACH1. Lane 8 used control IgG instead if anti-DACH1 for

the immunoprecipitation step.

(E) HCs from Dach1fl/fl mice were transduced with adeno-LacZ or adeno-Cre. After 48 hr, the cells were incubated with 0.3 mM palmitate for 3 hr, and then ChIP

was performed using an antibody against NCOR. The region spanning the aforementioned Atf6 intronic site was amplified by qRT-PCR and normalized to the

values obtained from the input DNA (n = 3; mean ± SEM, *p < 0.05). Inset, ChIP from a parallel set of cells that was treated the same as above, up until the final

post-immunoprecipitation wash. The beads were then boiled in loading buffer and assayed by immunoblot for NCOR and DACH1.

(F) Liver extracts from DIOmice treated with AAV8-con or AAV8-sh-NCORwere assayed for Atf6mRNA levels by qRT-PCR (n = 6, mean ± SEM, *p < 0.05). Inset:

protein extracts were probed for NCOR and b-actin by immunoblot to document NCOR silencing.
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Ubc9, which transfers the activated SUMO to protein substrates

(Ghisletti et al., 2007; Hay, 2005), HDAC4-mediated DACH1

degradation was abrogated (Figure 7D). As direct evidence

that HDAC4 promotes DACH1 SUMOylation, we found that

silencing HDAC4 abrogated DACH1 SUMOylation in primary

HCs (Figure 7E).
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Based on the consensus SUMO-acceptor site sequence

(Rodriguez et al., 2001) (http://www.abgent.com/sumoplot), we

identified three high-probability sites for SUMOylation in murine

DACH1: K341, K644, and K676. In order to determine whether

these lysine residues are targets for SUMOylation and degrada-

tion of DACH1, we created a mutant of DACH1 with lysine to

http://www.abgent.com/sumoplot


Figure 7. HDAC4-Mediated SUMOylation of DACH1 Leads to Proteasomal Degradation of DACH1 and Defective Insulin Signaling in HCs

(A) Primary HCs fromWTmicewere transduced with adeno-LacZ or adeno-HDAC4S3A. After 24 hr, the cells were pretreatedwith either vehicle orMG132 for 1 hr

followed by incubation with either BSA or 0.3 mM palmitate (palm) for 6 hr. Lysates were probed for DACH1 and b-actin by immunoblot. Densitometric quan-

tification of the immunoblot data is shown in the bar graph (n = 3; mean ± SEM, *p < 0.05 versus all other groups except LacZ-con).

(B) Lysates fromWT or DACH1 KOHCs transfected with poly-His-tagged SUMO1 and treated with BSA (Con) or palmitate (palm) were immunoprecipitated using

anti-poly-His and blotted for DACH1 or SUMO1. Arrows indicate SUMOylated proteins. The numbers below the SUMO1 immunoblot are the densitometric ratios

of SUMO-DACH1:total SUMO. The lower blot shows DACH1 and b-actin in whole cell lysates.

(C) Primary HCs from WT mice treated with AAV8-TBG-DACH1 were transfected with HA-tagged SUMO1 and treated with BSA (Con) or palmitate (palm) as

indicated. Lysates were immunoprecipitated using anti-HA and blotted for DACH1 or SUMO1. Arrows indicate SUMOylated proteins.

(D) HCs were pretreated with either scrambled RNA (scr) or siRNA targeting Ubc9 (si-Ubc9). After 12 hr, the cells were transduced with adeno-LacZ or adeno-

HDAC4S3A. After an additional 24 hr, the cells were incubated with BSA control or 0.3 mM palmitate (palm) for 5 hr as indicated by the minus and plus symbols.

Lysates were then probed for DACH1 and b-actin by immunoblot. Densitometric quantification of the immunoblot data is shown in the bar graph (n = 3; mean ±

SEM; *p < 0.05; bars 4 and 5 are not significantly different).

(E) Similar to (B), except that the cells were transduced with adeno-LacZ or adeno-sh-HDAC4.

(F) HCs from Dach1fl/fl mice treated with AAV-TBG-Cre were transduced with plasmids encoding WT DACH1 or 3KR mutant DACH1. After 12 hr, the cells were

transduced with adeno-LacZ or adeno-HDAC4S3A. After an additional 24 hr, the cells were incubated with 0.3 mM palmitate for 11 hr, followed by insulin

stimulation for 5 min. Lysates were probed for DACH1, b-actin, p-Akt, and Akt.

(G) Summary scheme of a CaMKII-HDAC4-DACH1 pathway linking obesity to defective insulin signaling in HCs. Based on the data in this report and our previous

publications (Ozcan et al., 2012, 2013), obesity-induced activation of CaMKII in HCs phosphorylatesHDAC4, which promotes its exit from the nucleus. As a result,

nuclear SUMOylation of the corepressor DACH1 is decreased, which prolongs its half-life and increases its level in the nucleus. DACH1, together with NCOR,

decreases the transcription of Atf6, leading to activation of the PERK-TRB3 pathway and defective insulin signaling, as described previously (Ozcan et al., 2013).

See also Figure S7.
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arginine substitutions at these three sites (DACH1-3KR mutant)

and transfected DACH1-deficient HCs with this construct. In

non-palmitate-treated HCs, WT DACH1 was SUMOylated as
before, but this was not seen with DACH1-3KR (Figure S7D).

Furthermore, HDAC4S3A was unable to decrease DACH1 levels

in the DACH1-3KR-transfected cells, in contrast to the situation
Cell Reports 15, 1–12, June 7, 2016 9
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with HCs expressing WT DACH1 (Figure 7F, top two blots). Most

importantly, the improvement in insulin signaling conferred by

HDAC4S3A in palmitate-treated HCs was abrogated when the

cells expressed 3KR-DACH1 instead of WT DACH1 (Figure 7F,

bottom two blots). These combined results show that nuclear

HDAC4 decreases DACH1 through SUMOylation and subse-

quent proteasome-mediated degradation. With this finding, we

present a summary of the pathway in which CaMKII activation

in HCs in obesity leads to defective insulin signaling (Figure 7G).

DISCUSSION

Understanding how ATF6 is suppressed in HCs in obesity is a

critical issue in view of its importance in both insulin signaling,

supported by our previous study (Ozcan et al., 2013) and

bolstered here, and HGP (Wang et al., 2009). Additionally, two in-

dependent studies reported associations between variants of

the ATF6 gene in humans and disturbed glucose homeostasis

and T2D (Meex et al., 2007; Thameem et al., 2006). The mecha-

nism of ATF6 suppression revealed here involves a very

interesting pathway in which the half-life of the corepressor

DACH1 is prolonged, leading to decreased transcription of

the Atf6 gene. Even though the key step in ATF6 activation is

its post-translational proteolytic cleavage and nuclear transloca-

tion (Ye et al., 2000), the data here imply that the level of Atf6

transcription becomes rate limiting in HCs in the setting of

obesity.

Our work shows that decreased levels of nuclear HDAC4 in

HCs in obesity indirectly lowers Atf6 transcription by increasing

the level of DACH1. In this context, a recent paper using an

unbiased proteomics approach found that obesity in humans

is associated with a decrease in HDAC4, which improves

with physical exercise, suggesting the possibility that nuclear

HDAC4 is protective in obesity (Abu-Farha et al., 2013). In

contrast, Mihaylova et al. reported that combined silencing of

hepatic HDAC4, 5, and 7 increases FoxO1 acetylation in fasted

lean mice and lowers HGP in lean and obese mice (Mihaylova

et al., 2011). In this regard, we found no difference in the level

of acetylated FoxO1 in the livers of obese mice treated with

constitutively nuclear HDAC4or HDAC4 shRNA.Moreover, while

the major endpoint of the Mihaylova et al. study was blood

glucose levels, the study here focused on liver insulin signaling

and whole-body insulin sensitivity.

HDAC4, like other class IIa HDACs (5, 7, and 9), exhibits very

low deacetylase activity because of the substitution of a catalytic

Tyr with His (Lahm et al., 2007). As such, the role of HDAC4

shown here is related its ability to SUMOylate and thereby

promote the proteasomal degradation of DACH1 when HDAC4

is nuclear, e.g., in the lean state. Previous studies have shown

that HDAC4 can serve as SUMO E3 ligase for a number of target

proteins in various cell types (Ghisletti et al., 2007; Grégoire and

Yang, 2005) and that SUMOylation can serve as a priming pro-

cess for ubiquitination, leading to protein ubiquitination and pro-

teasomal degradation of the target proteins (Lee et al., 2014; Liu

et al., 2013; Miteva et al., 2010). Consistent with the findings

here, only the nuclear form of HDAC4 possesses SUMO E3

ligase activity (Lee et al., 2009; Yao and Yang, 2011). Of note,

DACH1 can be affected by other post-translational modifications
10 Cell Reports 15, 1–12, June 7, 2016
that affect its function, including acetylation and phosphorylation

(Chen et al., 2013; Wu et al., 2014), and thus it will be interesting

to examine in the future whether these modifications of DACH1

occur in HCs in obesity.

Class IIa HDACs can affect gene transcription by other mech-

anisms, but none of these appear to be involved in the pathway

described here. For example, HDAC4 can effect gene repression

by recruiting HDAC3 and its coregulators to the nucleus, which

repress gene transcription (Fischle et al., 2002). However, we

found that siRNAmediated-silencing of HDAC3 did not suppress

Atf6 transcription in palmitate-treated CaMKII-deficient HCs

(data not shown). Consistent with the lack of a role of HDAC3

in the pathway presented here, a recent study showed that

when HDAC3 is silenced in HCs in obese mice, metabolic pre-

cursors are rerouted away from glucose production into lipid

synthesis, causing steatosis and improved insulin sensitivity

(Sun et al., 2012).

Most studies on DACH1 have focused on its roles in develop-

ment and tumorigenesis (Popov et al., 2010). Ironically, one of

the developmental roles is related to perinatal pancreatic b cell

proliferation, which is associated with DACH1-mediated repres-

sion of p27Kip1 (Kalousova et al., 2010). The hypothesis that

DACH1 is required for normal insulin secretion was suggested

as a mechanism to explain a link between a DACH1 polymor-

phism and diabetes in a Chinese population (Ma et al., 2014),

but replication in additional populations and direct links to b cell

function are needed to substantiate this claim. In contrast, the

findings here show a detrimental, non-developmental role

of liver DACH1 in obesity-associated insulin resistance. Accord-

ingly, silencingofDACH1 in the livers of obesemice, by improving

insulin signaling in HCs and improving overall metabolism, cor-

rects hyperinsulinemia.Moreover, we found a striking correlation

between hepatic DACH1 levels and BMI in humans.

We provide evidence that suppression of Atf6 in HCs in

obesity involves aDACH1-NCORcomplex. However, this finding

does not imply that hepatic NCOR silencing in obese mice

would mimic the metabolic improvement seen with hepatic

DACH1 silencing, because NCOR has functions in liver that are

independent of DACH1. For example, NCOR in complex with

HDAC3 represses genes involved in hepatic lipogenesis, and

thus one of the effects of HC-targeted NCOR deletion is steato-

sis (Sun et al., 2013). In contrast, hepatic steatosis is improved by

liver-targeted silencing of DACH1 (not shown) or its upstream

effector, CaMKII (Ozcan et al., 2013).

In summary, our study reveals a role for DACH1 in obesity-

induced glucose intolerance and insulin resistance in mice, with

a striking correlation between liver DACH1 level and obesity in

humans. While DACH1 upregulation in obesity may affect a

number of different genes and pathways, its ability to suppress

insulin signaling by repressing Atf6 transcription appears to be

dominant. Nonetheless, future studies will likely reveal additional

DACH1 targets in HCs that may shed additional light on gene

expression changes in obesity. Finally, we recently published

that drug-mediated inhibition of MK2, a kinase downstream of

CaMKII in HCs in obesity, improves metabolism in obese mice

(Ozcan et al., 2015), which is consistent with genetic studies con-

ductedbybothour group (Ozcanet al., 2013) andan independent

laboratory (Ruiz et al., 2016). Given that the upstream kinase
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pathway promotes diabetes by suppressing ATF6, the findings in

this report provide important mechanistic underpinnings for

future therapeutic strategies that attempt to improvemetabolism

in obese T2D subjects by targeting this pathway.

EXPERIMENTAL PROCEDURES

Mouse Experiments

ob/ob and DIO mice were obtained from The Jackson Laboratory. DIO mice

were fed a high-fat diet with 60%kcal from fat (ResearchDiets) andmaintained

on a 12-hr light-dark cycle. Dach1fl/fl mice were generated as described previ-

ously (Chen et al., 2015). The detailed procedures are shown in Supplemental

Experimental Procedures.

Primary HCs

Primary mouse HCs were isolated from 8- to 12-week-old mice as described

previously (Ozcan et al., 2012). Unless indicated otherwise, the cells were

cultured in DMEM containing 10% fetal bovine serum, treated as described

in the figure legends, and then incubated for 5 hr in serum-free DMEM before

harvesting. The detailed procedures are shown in Supplemental Experimental

Procedures.

Statistical Analysis

All results are presented as mean ± SEM, and p values were calculated using

the Student’s t test for normally distributed data and the Mann-Whitney rank

sum test for non-normally distributed data. One-way ANOVA with post hoc

Tukey test was used to evaluate differences among groups when three or

more groups were analyzed.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2016.05.006.
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