Selected Publications
Search
PubMed for articles
Santosh R. Sukka, Patrick B. Ampomah, David Ngai, Xiaobo Wang, Lancia N. F. Darville, George Kuriakose, Yuling Xiao, Jinjun Shi, John M. Koomen, Robert H. McCusker & Ira Tabas. Efferocytosis drives a tryptophan metabolism pathway in macrophages to promote tissue resolution. Nature Metabolism (2024). 06 September 2024 [pdf reprint] [Link]
David Ngai, Santosh R. Sukka and Ira Tabas. Crosstalk between efferocytic
myeloid cells and T-cells and its relevance to atherosclerosis. Front. Immunol., 29 May 2024. Sec. T Cell Biology, Volume 15 - 2024 [pdf reprint] [Link]
Shi, H., Moore, M.P., Wang, X. and Tabas, I. (2024) Efferocytosis in liver disease. JHEP Reports 5:100960. [pdf reprint]
Wang, X,. Moore, M.P., Shi, H., Miyata, Y., Donnelly, S.K., Radiloff, D.R., Tabas, I. (2023) Hepatocyte-targeted siTAZ therapy lowers liver fibrosis in NASH diet-fed chimeric mice with hepatocyte-humanized livers. Mol Ther Methods Clin Dev. 31: [pdf reprint] [Link]
Ngai, D., Schilperoort, M., and Tabas, I. (2023) Efferocytosis-induced lactate enables the proliferation of pro-resolving macrophages to mediate tissue repair. Nature Metab. 5:2206-2219. [pdf reprint] [Link]
Schilperoort, M., Ngai, D., Sukka, S.R., Avrampou, K., Shi, H., and Tabas, I. (2023) The role of efferocytosis-fueled macrophage metabolism in the resolution of inflammation. Immunol. Rev. 19:65-80. [pdf reprint] [Link]
Schilperoort, M., Ngai, D., Katerelos, M., Power, D.A., Tabas, I. (2023) PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nature Metabolism 5:431-444. [pdf reprint] [Link]
Shi, H., Wang, X., Li, F., Gerlach, B.D., Yurdagul Jr, A, Moore, M., Zeldin, S., Zhang, H., Cai, B., Zheng, Z., Valenti, L., Tabas, I. (2022) CD47-SIRPa axis blockade in NASH promotes necroptotic hepatocyte clearance by liver macrophages and decreases hepatic fibrosis. Science Transl. Med. 14:eabp8309. [pdf reprint] [Link]
Ampomah, P.B., Cai, B., Gerlach, B.D., Yurdagul Jr, A., Wang, X., Kuriakose, G., Darville, L.N., Sun, Y., Sidoli, S., Koomen, J.M., Tall, A.R., Tabas, I. (2022) Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nature Metabolism 4:444-457. [pdf reprint] [Link]
Wang, X., Zeldin, S., Shi, H., Zhu, C., Saito, Y., Corey, K.E., Remotti, H.E., Verna. E., Pajvani, U.B., Schwabe, R.F., and Tabas, I. (2022) TAZ-induced Cybb contributes to liver tumor formation in non-alcoholic steatohepatitis. J. Hepatol. 76:910-920. [pdf reprint] [Link]
Gerlach, B.D., Ampomah, P.B., Yurdagul Jr., A., Liu, C., Lauring, M.C., Wang, X., Kasikara, C., Kong, N., Shi, J., Tao, W., Tabas. I. (2021) Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabolism 33:2445-2463. PMC8665147 [pdf reprint] [Link]
Canan Kasikara, … , Muredach P Reilly, Ira Tabas. Deficiency of macrophage PHACTR1 impairs efferocytosis and
promotes atherosclerotic plaque necrosis. J Clin Invest. 2021. https://doi.org/10.1172/JCI145275. [pdf reprint]
Ze Zheng, … , José A. López, Ira Tabas. Interacting hepatic PAI-1/tPA gene regulatory pathways
influence impaired fibrinolysis severity in obesity. J Clin Invest. 2020;130(8):4348-4359. [pdf reprint] [Link]
Zheng, Z., Nayak, L., Wang, W., Yurdagul, A. Jr., Wang, X., Cai, B., Ozcan, L., Pestell, R.G., Jain, M.K., and Tabas, I. (2019) Hepatocyte-derived tissue plasminogen activator regulates systemic fibrinolysis. Blood 133:743-753. [pdf reprint] [Link]
Wei Tao, Arif Yurdagul Jr, Na Kong, Wenliang Li, Xiaobo Wang, Amanda C. Doran,
Chan Feng, Junqing Wang, Mohammad Ariful Islam, Omid C. Farokhzad,
Ira Tabas, Jinjun Shi. siRNA nanoparticles targeting CaMKIIy in lesional
macrophages improve atherosclerotic plaque
stability in mice. Tao et al., Sci. Transl. Med. 12, eaay1063 (2020), 1-12. [pdf reprint]
Xiaobo Wang, Bishuang Cai,
Xiaoming Yang, ..., Peter Tontonoz,
Robert F. Schwabe, Ira Tabas. Cholesterol Stabilizes TAZ in Hepatocytes to
Promote Experimental Non-alcoholic
Steatohepatitis. Cell Metabolism 31, 1–18. [pdf reprint] [Link]
Arif Yurdagul, Jr.,
Manikandan Subramanian,
Xiaobo Wang, ..., John L. Cleveland,
Deborah M. Muoio, Ira Tabas. Macrophage Metabolism of Apoptotic Cell-Derived
Arginine Promotes Continual Efferocytosis and
Resolution of Injury. 16. Cell Metabolism 31, 1–16. [pdf reprint] [Link]
Cai. B., Dongiovanni, P., Corey, K.E., Chung, R.T., Wang. X., Shmarakov, I.O., Zheng, Z., Rothlin, C., Schwabe, R.F., Blaner, W.S., Birge, R.B., Valenti, L., Tabas. I. Macrophage MerTK promotes liver fibrosis in NASH. Cell Metabolism, online December 12, 2019. [pdf reprint]
Doran, A.C., Yurdagul, A., Jr., Tabas, I. (2020) Mechanisms and consequences of efferocytosis in health and disease. Nature Rev. Immunol., Online. [pdf reprint]
Xiaobo Wang, Mark R. Sommerfeld, Kerstin Jahn-Hofmann, Bishuang Cai, Aveline Filliol, Helen E. Remotti,Robert F. Schwabe, Aimo Kannt and Ira Tabas. A Therapeutic Silencing RNA Targeting Hepatocyte TAZ Prevents and Reverses Fibrosis in Nonalcoholic Steatohepatitis in Mice. Hepatology Communications, Vol. 0, No. 0, 2019, 1-14 [pdf reprint]
Jonathan D. Proto, Amanda C. Doran, Galina Gusarova, ..., George Kuriakose, Jahar Bhattacharya, Ira Tabas. Regulatory T Cells Promote Macrophage
Efferocytosis during Inflammation Resolution. Immunity 49, 1–12
October 16, 2018. [pdf reprint]
Bishuang Cai, Canan Kasikara, Amanda C. Doran, Rajasekhar Ramakrishnan,
Raymond B. Birge, Ira Tabas. MerTK signaling in macrophages promotes
the synthesis of inflammation resolution mediators
by suppressing CaMKII activity. Cai et al., Sci. Signal. 11, eaar3721 (2018). [pdf reprint]
Canan Kasikara, Amanda C. Doran, Bishuang Cai and Ira Tabas. The role of non-resolving inflammation
in atherosclerosis. J Clin Invest. 2018;128(7):2713–2723. [pdf reprint]
Jonathan D. Proto, Amanda C. Doran, Manikandan Subramanian, Hui Wang, Mingyou Zhang, Erdi Sozen,
Christina C. Rymond, George Kuriakose, Vivette D’Agati, Robert Winchester, Megan Sykes,
Yong-Guang Yang
and Ira Tabas. Hypercholesterolemia induces T cell expansion
in humanized immune mice. J Clin Invest. 2018. https://doi.org/10.1172/JCI97785. [pdf reprint]
Ghorpade, D., Ozcan, L., Zheng, Z., Nicoloro, S.M., Shen, Y., Chen, E., Blüher, M., Czech, M.P., Tabas, I. (2018) Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature online. http://rdcu.be/JyMN
Ira Tabas, and Andrew H. Lichtman. Monocyte-Macrophages and T Cells in Atherosclerosis. Immunity 47, Issue 4, 621–634, October 17, 2017. [pdf reprint]
Doran, A.C., Ozcan, L., Cai, B., Zheng, Z., Fredman, G.,, Dorweiler, B., Sluimer, J.C., Hsieh, J., Kuriakose, G., Tall, A.R., and Tabas, I. (2017) CaMKIIg suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J. Clin. Invest. 127:4075-4089. [pdf reprint]
Wang, Y., Subramanian, M., Yurdagul Jr., A., Barbosa-Lorenzi, V.C., Cai, B., de Juan Sanz, J., Ryan, T.A., Nomura, M., Maxfield, F.R., Tabas, I. (2017) Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 17:331-345. [pdf reprint]
Bishuang Cai, Edward B. Thorp, Amanda C. Doran, Brian E. Sansbury, Mat J.A.P. Daemen, Bernhard Dorweiler,
Matthew Spite, Gabrielle Fredman, and Ira Tabas. MerTK receptor cleavage promotes plaque necrosis
and defective resolution in atherosclerosis. J Clin Invest. Feb 1 2017;127(2):564-568. [pdf reprint]
Ira Tabas. 2016 Russell Ross Memorial Lecture in Vascular Biology:
Molecular–Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:183-189; originally published online December 15, 2016; DOI: 10.1161/ATVBAHA.116.308036. [pdf reprint]
Manikandan Subramanian, Jonathan D. Proto, Glenn K. Matsushima & Ira Tabas. Deficiency of AXL in Bone Marrow-
Derived Cells Does Not Affect
Advanced Atherosclerotic Lesion
Progression. Scientific Reports 6:39111 | DOI: 10.1038/srep39111. [pdf reprint]
Xiaobo Wang, Ze Zheng, Jorge Matias Caviglia, ...,
Jay H. Lefkowitch, Robert F. Schwabe,
Ira Tabas. Hepatocyte TAZ/WWTR1 Promotes Inflammation
and Fibrosis in Nonalcoholic Steatohepatitis. Cell Metabolism 24, 848–862. [pdf reprint]
Gabrielle Fredman, Jason Hellmann, Jonathan D. Proto, George Kuriakose, Romain A. Colas,Bernhard Dorweiler, E. Sander Connolly, Robert Solomon, David M. Jones, Eric J. Heyer, Matthew Spite & Ira Tabas. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nature Communications 7:12859, DOI: 10.1038/ncomms12859, 1-11, September 23, 2016. [pdf reprint]
Ira Tabas. Death-defying plaque cells. Nature: Vol 536, 4 August, 2016. [pdf reprint]
Lale Ozcan, Devram S. Ghorpade, Ze Zheng, Jane Cristina de Souza, Ke Chen, Marc Bessler, Melissa Bagloo,
Beth Schrope, Richard Pestell, and Ira Tabas. Hepatocyte DACH1 Is Increased in Obesity via Nuclear Exclusion of HDAC4 and Promotes Hepatic Insulin Resistance. Cell Reports 15:1–12, June 7, 2016. [pdf reprint]
Bishuang Cai, Edward B. Thorp, Amanda C. Doran, Manikandan Subramanian, Brian E. Sansbury,
Chyuan-Sheng Lin, Matthew Spite, Gabrielle Fredman, and Ira Tabas (2016). MerTK cleavage limits proresolving mediator
biosynthesis and exacerbates tissue inflammation. www.pnas.org/cgi/doi/10.1073/pnas.1524292113, PNAS Early Edition, 1-6. [pdf reprint]
Nazila Kamaly, Gabrielle Fredman, Jhalique Jane R. Fojas, Manikandan Subramanian, Won II Choi, Katherine Zepeda, Cristian Vilos, Mikyung Yu, Suresh Gadde, Jun Wu, Jaclyn Milton, Renata Carvalho Leitao, Livia Rosa Fernandes, Moaraj Hasan, Huayi Gao,
Vance Nguyen, Jordan Harris, Ira Tabas, and Omid C. Farokhzad (2016). Targeted Interleukin-10 Nanotherapeutics Developed with a Microfluidic Chip Enhance
Resolution of Inflammation in Advanced Atherosclerosis. ACS Publications XXXX American Chemical Society DOI: 10.1021/acsnano.6b01114, A-M. [pdf reprint]
Manikandan Subramanian, Lale Ozcan, Devram Sampat Ghorpade, Anthony
W. Ferrante Jr. and Ira Tabas (2015). Suppression of Adaptive Immune Cell
Activation Does Not Alter Innate Immune
Adipose Inflammation or Insulin Resistance
in Obesity. PLOS ONE DOI:10.1371/journal.pone.0135842, 1-19. [pdf reprint]
Lale Ozcan, Xiaoming Xu, Shi-Xian Deng, Devram S. Ghorpade,
Tiffany Thomas, Serge Cremers, Brian Hubbard, Michael H. Serrano-Wu,
Matthias Gaestel, Donald W. Landry, and Ira Tabas (2015). Treatment of Obese Insulin-Resistant
Mice With an Allosteric MAPKAPK2/3
Inhibitor Lowers Blood Glucose and
Improves Insulin Sensitivity Diabetes diabetes.diabetesjournals.org 64:3396–3405. [pdf reprint]
Ira Tabas, Guillermo García-Cardeña, and Gary K. Owens (2015). Recent insights into the cellular biology
of atherosclerosis. Journal of Cell Biology 209:1, 13-22. [pdf reprint]
Gabrielle Fredman, Nazila Kamaly, Stefano Spolitu, Jaclyn Milton, Devram Ghorpade,
Raymond Chiasson, George Kuriakose, Mauro Perretti, Omid Farokzhad, Ira Tabas (2015). Targeted nanoparticles containing the proresolving
peptide Ac2-26 protect against advanced
atherosclerosis in hypercholesterolemic mice. Science Transl. Med. www.ScienceTranslationalMedicine.org Vol 7 Issue 275 275ra20. [pdf reprint]
Manikandan Subramanian, Edward B Thorp and Ira Tabas (2014). Identification of a Non-Growth Factor Role for GM-CSF in Advanced Atherosclerosis: Promotion of Macrophage Apoptosis and Plaque Necrosis Through IL-23 Signaling. Circ. Res. Print ISSN: 0009-7330. Online ISSN: 1524-4571. [pdf reprint]
Gabrielle Fredman, Lale Ozcan, Stefano Spolitu, Jason Hellmann, Matthew Spite, Johannes Backs, and Ira Tabas (2014). Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc. Natl. Acad. Sci. U.S.A. 111:14530-5. [pdf reprint]
Gabrielle Fredman, Lale Ozcan, Ira Tabas (2014). Common therapeutic targets in
cardiometabolic disease. Science Transl. Med. www.ScienceTranslationalMedicine.org Vol 6 Issue 239 239ps5. [pdf reprint]
Manikandan Subramanian & Ira Tabas (2014). A new RIDDle in DC-mediated cross-presentation. Nature Immunology 15(3): 213–215. [pdf reprint]
Manikandan Subramanian, Crystal D. Hayes, Joseph J. Thome, Edward Thorp, Glenn K. Matsushima, Joachim Herz, Donna L. Farber, Kang Liu, Madepalli Lakshmana, and Ira Tabas (2014). An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest. 124:1296-1308. [pdf reprint]
Lale Ozcan, Jane Cristina de Souza, Alp Avi Harari, Johannes Backs, Eric N. Olson, and Ira Tabas (2013). Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metabolism 18:803–815. [pdf reprint]
Nazila Kamaly, Gabrielle Fredman, Manikandan Subramanian, Suresh Gadde, Aleksandar Pesic, Louis Cheung, Zahi Adel Fayad, Robert Langer, Ira Tabas, and Omid Cameron Farokhzad (2013). Development and in vivo efficacy of targeted polymeric inflammation-resolving nanoparticles. Proc. Natl. Acad. Sci. USA 110:6506-6511. [pdf reprint]
Ira Tabas and Christopher K. Glass (2013). Anti-inflammatory therapy in chronic
disease: challenges and opportunities. Science, 339:166-172. [pdf reprint]
Manikandan Subramanian, Edward Thorp, Goran K. Hansson, and Ira Tabas (2013). Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J Clin Invest. Jan 2;123(1):179-88. [pdf reprint]
Ira Tabas (2012) Bad matters made worse. Nature 487:306–308. [pdf reprint]
Lale Ozcan, Catherine C.L. Wong, Gang Li, Tao Xu, Utpal Pajvani, Sung Kyu Robin Park, Anetta Wronska,
Bi-Xing Chen, Andrew R. Marks, Akiyoshi Fukamizu, Johannes Backs, Harold A. Singer, John R. Yates, III,
Domenico Accili, and Ira Tabas (2012). Calcium signaling through CaMKII regulates hepatic glucose production
in fasting and obesity. Cell Metabolism 15:1–13. [pdf reprint]
Connie W. Woo, Lydia Kutzler, Scot R. Kimball and Ira Tabas (2012) Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nature Cell Biology 14:2, 192-200 [pdf reprint]
Xianghai Liao, Judith C. Sluimer, Ying Wang, Manikandan Subramanian, Kristy Brown, J. Scott Pattison,
Jeffrey Robbins, Jennifer Martinez, and Ira Tabas (2012). Macrophage autophagy plays a protective role
in advanced atherosclerosis. Cell Metabolism 15:1–9. [pdf reprint]
Karin E. Bomfeldt and Ira Tabas (2011) Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metabolism 14:575-585. [pdf reprint]
Edward Thorp, Tomas Vaisar, Manikandan Subramanian, Lauren Mautner, Carl Blobel, and Ira Tabas (2011) Shedding of the MER tyrosine kinase receptor is mediated by ADAM17 through a pathway involving reactive oxygen species, protein kinase δ, and P38 map kinase. Journal of Biological Chemistry 286:38, 33335-33344 [pdf reprint]
Ira Tabas (2011) Bedside to Bench: Finding the culprit in your heart. Nature Medicine 17:7, 791-793. [pdf reprint]
Kathryn J. Moore and Ira Tabas (2011) Macrophages in the pathogenesis of atherosclerosis. Cell, 145:3, 341-355. [pdf reprint]
Edward Thorp, Takao Iwawaki, Masayuki Miura, and Ira Tabas (2011)
A reporter for tracking the UPR in vivo reveals patterns of temporal and cellular stress during atherosclerotic progression. Journal of Lipid Research
52,1033-1038. [pdf reprint]
Tabas, I., Ron, D. (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology, 13:3, 184-190. [pdf reprint]
Gang Li, Christopher Scull, Lale Ozcan, and Ira Tabas (2010) NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. Journal of Cell Biology 191:6, 1113-1125. [pdf reprint]
Tracie A. Seimon, Marissa J. Nadolski, Xianghai Liao, Jorge Magallon, Matthew Nguyen, Nicole T. Feric, Marlys L. Koschinsky, Richard Harkewicz, Joseph L. Witztum, Sotirios Tsimikas, Douglas Golenbock, Kathryn J. Moore, and Ira Tabas (2010) Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metabolism 12:467–482. [pdf reprint]
Tabas, I., (2010) The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res. 107:839-850. [pdf reprint]
Devlin, C., Pipalia, N.H., Liao, X., Schuchman, E.H., Maxfield F.R., and Tabsa, I .(2010)
Improvement in lipid and protein trafficking in NPC1 cells by correction of a secondary enzyme defect. Traffic, 11: 601-615. [pdf reprint]
Tabas, I., Tall, A,. and Accili,D. (2010) The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ. Res. 106: 58-67 [pdf reprint]
Tabas, I. (2009) Macrophage death and defective inflammation resolution in atherosclerosis. Nature Reviews Immunology, 10:36-46 [pdf reprint]
Thorp, E. and Tabas, I. (2009) Mechanisms and consequences of efferocytosis in advanced atherosclerosis. Journal of Leukocyte Biology. 86, 1089-1095. [pdf reprint]
Woo, C.W., Cui, D., Arellano, J., Dorweiler, B., Harding, H., Fitzgerald, K.A., Ron, D., and Tabas, I. (2009) Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling. Nature Cell Biology [pdf reprint]
Tabas, I. (2009) Macrophage apoptosis in atherosclerosis:
consequences on plaque progression and the role of endoplasmic reticulum stress Antioxid. Redox Signal. 11, 2333–2339. [pdf reprint]
Timmins, J.M., Ozcan,L., Seimon,T.A., Li,G., Malagelada,C., Backs,J., Backs,T., Bassel-Duby,R., Olson, E.N., Anderson, M.E., and Tabas, I. (2009) Calcium/calmodulin-dependent protein kinase II links ER stress with fas and mitochondrial apoptosis pathways. Journal of Clinical Investigation. 119(10):2925-2941. [pdf reprint]
Li, G., Mongillo, M., Chin, K-T., Harding, H., Ron, D., Marks, A.R., and Tabas, I.A. (2009) Role of ERO1-α–mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress–induced apoptosis. Journal of Cell Biology. 186(6):783-792. [pdf reprint]
Thorp, E., Li, G., Seimon, T. A., Kuriakose G., Ron D., Tabas, I.A. (2009) Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe-/- and Ldlr-/- mice lacking CHOP. Cell Metabolism. 9:474–481. [pdf reprint]
Seimon T.A., Wang Y., Han S., Senokuchi T., Schrijvers D.M., Kuriakose G., Tall A.R., Tabas, I.A. (2009) Macrophage deficiency of p38α MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice. The Journal of Clinical Investigation. 119(4):886-898. [pdf reprint]
Manning-Tobin, J.J., Moore, K.J., Seimon, T.A., Bell, S.A., Sharuk, M., Alvarez-Leite, J.I., de Winther, M.P.J., Tabas, I., and Freeman, M.W. (2009) Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 29:19-26. [pdf reprint]
Li, Y., Zhang, Y., Dorweiler, B., Cui, D., Wang, T., Woo,
C.W., Brunkan, C.S. , Wolberger, C., Imai, S., and Tabas, I. (2008) Extracellular nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. J. Biol. Chem. 283(50):34833–34843. [PDF reprint]
Thorp, E., Li, Y., Bao, L., Yao, P.M., Kuriakose, G., Rong, J., Fisher, E.A. and Tabas, I. (2008) Increased apoptosis in advanced atherosclerotic lesions of Apoe-/-mice lacking macrophage Bcl-2. Arterioscler. Thromb. Vasc. Biol. [PDF reprint]
Devlin, C.M., Leventhal, A.R., Kuriakose, G., Schuchman, E.H., Williams, K.J., and Tabas, I. (2008) Atheromata and accelerates lesion progressionAcid sphingomyelinase promotes lipoprotein retention within early. arterioscler. Arterioscler. Thromb. Vasc. Biol. 28:1723-1730. [PDF
reprint]
Iqbal, J., Dai, K., Seimon, T.A., Jungreis, R., Oyadomari, M., Kuriakose, G., Ron, D., Tabas, I., and Hussain M.M. (2008) IRE1b Inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metabolism. 7:1–11. [PDF
reprint]
Thorp, E., Cui, D., Schrijvers, D.M., Kuriakose, G. and Tabas, I. (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of Apoe -/- Mice. Arterioscler. Thromb. Vasc. Biol. [PDF
reprint]
Lim, W-S., Timmins, J.M., Seimon, T.A., Sadler, A., Kolodgie, F.D., Virmani, R., Tabas, I. (2008) Signal transducer and activator of transcription-1 Is critical for apoptosis in macrophages subjected to endoplasmic reticulum stress in vitro and in advanced atherosclerotic lesions in vivo. Circulation 117:940-951. [PDF
reprint]
Thorp, E., Kuriakose, G., Shah, Y.M., Gonzalez, F.J., Tabas, I. (2007) Pioglitazone increases macrophage apoptosis and plaque necrosis in advanced atherosclerotic lesions of non-diabetic LDL receptor-null mice. Circulation 116:2182-2190. [PDF
reprint]
Cu,i D., Thorp E., Li, Y., Wang, N., Yvan-Charvet, L., Tall AR, Tabas, I. (2007) Pivotal Advance: Macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J Leukoc Biol. 82(5):1040-50. [PDF
reprint]
Tabas, I. , Williams, K.J., Borén,
J. (2007) Subendothelial
lipoprotein retention as the initiating process
in atherosclerosis: update and therapeutic
implications. Circulation 116(16):1832-44.
[PDF
reprint]
Tabas, I. (2007) A
Two-Carbon switch to sterol-induced autophagic
death. Autophagy 3 (1):38–41.
[PDF
reprint]
Seimon, T.A., Obstfeld, A., Moore,
K.J., Golenbock, D.T., Tabas, I. (2006)
Combinatorial pattern recognition receptor
signaling alters the balance of life and
death in macrophages. Proc.
Natl. Acad. Sci. U.S.A.
103 (52):19794–19799. [PDF
reprint]
Bao, L., Yankun, L., Deng, S.,
Landry, D., Tabas, I. (2006) Sitosterol-containing
lipoproteins trigger free sterol-induced
caspase-independent death in ACAT-competent
macrophages. J. Biol. Chem. 281 (44):33635–33649.
[PDF
reprint]
Li, Y., Gerbod-Giannone, M.,
Seitz, H., Cui, D., Thorp, E.,
Tall, A.R.,
Matsushima, G.K., Tabas, I. (2005) Cholesterol-induced
apoptotic macrophages elicit an inflammatory
response in phagocytes, which is partially
attenuated by the mer receptor. J. Biol.
Chem. 281 (10):6707–6717. [PDF
reprint]
Maxfield, F.R., Tabas, I. (2005)
Role of cholesterol and lipid organization
in
disease. Nature 438:36-45. [PDF
reprint]
Tabas, I. (2005) Consequences
and therapeutic implications of macrophage
apoptosis in atherosclerosis:
the importance of lesion stage and phagocytic
efficiency. Arterioscler Thromb Vasc Biol. 25:2255-2264.
[PDF reprint]
DeVries-Seimon, T, Li Y, Mei Yao,
P, Stone, E, Wang, Y, Davis, R, Flavell,
R, Tabas, I. (2005) Cholesterol-induced macrophage
apoptosis requires ER stress pathways and
engagement of the type A scavenger receptor. J.
Cell Biol. 171 (1):61-73. [PDF
reprint]
Li Y, Schwabe, R,
DeVries-Seimon, T, Mei Yao, P, Gerbod-Giannone,
M, Tall, A, Davis, R,
Flavell, R, Brenner, D, and Tabas,
I. (2005) Free cholesterol-loaded macrophages
are an abundant source of tumor necrosis factor-alpha
and interleukin-6. J. Biol. Chem. 280
(23):21763–21772. [PDF
reprint]
Wong, M-L., Xie, B., Beatini, N.,
Phu, P., Marathe, S., Johns, A., Hirsch, E., Williams,
K.J., Licinio, J., and Tabas, I. (2000) Acute
systemic inflammation up-regulates secretory sphingomyelinase
in vivo: a possible new link between inflammatory
cytokines and atherogenesis. Proc. Natl. Acad.
Sci. U.S.A. 97:8681-8686.
Marathe, S., Miranda, S.R.P., Devlin,
C., Johns, A., Kuriakose, G., Williams, K.J.,
Schuchman, E.H., and Tabas, I. (2000) Creation
of a mouse model for non-neurological (type B)
Niemann-Pick mouse model by stable, low-level
expression of lysosomal sphingomyelinase in the
absence of secretory sphingomyelinase: relationship
between brain intra-lysosomal enzyme activity
and central nervous system function. Hum.
Molec. Gen. 9:1967-1976.
Zhang, D., Tang, W., Yao, P.M., Yang, C., Xie,
B., Jackowski, S., and Tabas, I. (2000) Macrophages
deficient in CTP:phosphocholine cytidylyltransferase-a
are viable under normal culture conditions but
are highly susceptible to free cholesterol-induced
death. Molecular genetic evidence that the induction
of phosphatidylcholine biosynthesis in free cholesterol-loaded
macrophages is an adaptive response. J. Biol. Chem. 275:35368-35
Sakr, S., Eddy, R.J., Barth, H.,
Wang, F., Greenberg, S., Maxfield, F.R., and Tabas,
I. (2001) The uptake and degradation of matrix-bound
lipoproteins by macrophages require an intact
actin cytoskeleton, Rho family GTPases, and myosin
ATPase activity. J. Biol. Chem. 276:37649-37658.
Yao, P.M. and Tabas, I. (2001) Free cholesterol
loading of macrophages is associated with widespread
mitochondrial dysfunction and activation of the
mitochondrial apoptosis pathway. J. Biol. Chem. 276:42468-42476.
Leventhal, A.R., Chen, W., Tall,
A.R., and Tabas, I. (2001) Acid sphingomyelinase-deficient
macrophages have defective cholesterol efflux
and trafficking. J. Biol. Chem. 276:44976-44983.
[view pdf]
Tabas, I. (2002) Cholesterol in
health and disease. J. Clin. Invest. 110:583-590.
[view pdf]
Tabas, I. (2002) Consequences of cellular cholesterol
accumulation. J. Clin. Invest. 110:955-911. [view
pdf]
Devlin, C.M., Kuriakose, G., Hirsch,
E., and Tabas, I. (2002) Genetic alterations of
interleukin-1 receptor antagonist in mice markedly
affect non-HDL lipoprotein cholesterol levels
and foam cell lesion size. Proc. Natl. Acad.
Sci. U.S.A. 99: 6280-6285.
Feng, B. and Tabas, I. (2002) ABCA1-mediated
cholesterol efflux is defective in free cholesterol-loaded
macrophages. Mechanism involves enhanced ABCA1
degradation in a process requiring full npc1 activity. J. Biol. Chem. 277:43271-43280. [view
pdf]
Feng, B, Yao, P.M., Li, Y., Devlin,
C., Zhang, D., Harding, H., Sweeney, M., Rong,
J.X., Kuriakose, G., Fisher, E.A., Marks, A.R.,
Ron, D., Tabas, I. (2003) The endoplasmic reticulum
is the site of cholesterol-induced cytotoxicity
in macrophages. Nature Cell Biology 5:781-792.
[view pdf]
Feng, B., Zhang, D., Kuriakose,
G., Devlin, C.M., Kockx, M., and Tabas, I. (2003)
Niemann-Pick C heterozygosity confers resistance
to lesional necrosis and macrophage apoptosis
in murine atherosclerosis. Proc. Natl. Acad.
Sci. U.S.A. 100:10423-10428. [view
pdf]
Patel, M., Morrow, J., Maxfield,
F.R., Strickland, D.K., Greenberg, S., and Tabas,
I. (2003) The cytoplasmic domain of LDL receptor-related
protein, but not that of the LDL receptor, triggers
phagocytosis. J. Biol. Chem. 278: 44799-44807
[view pdf]
Leventhal, A.R., Leslie, C.C., and
Tabas, I. (2004) Suppression of macrophage eicosanoid
synthesis by atherogenic lipoproteins is profoundly
affected by cholesterol-fatty acyl esterification
and the Niemann-Pick C pathway of lipid trafficking. J. Biol. Chem. 279:8084-8092. [view
pdf]
Li, Y., Ge, M., Ciani, L., Kuriakose,
G., Westover, E.J., Dura, M., Covey, D.F., Freed,
J.H., Maxfield, F.R., Lytton, J., and Tabas, I.
(2004) Enrichment of Endoplasmic Reticulum with
Cholesterol Inhibits SERCA2b Activity in Parallel
with Increased Order of Membrane Lipids. J.
Biol. Chem. 279:37030–37039. [view
pdf]
Tabas, I (2004) Apoptosis and plaque
destabilization in atherosclerosis: the role of
macrophage apoptosis induced by cholesterol. Cell
Death Diff. 11:S12-S16. [view
pdf]
Tabas, I. (2004) Sphingolipids and
Atherosclerosis: A Mechanistic Connection? A Therapeutic
Opportunity? Circulation. 110:3400-3401. [view
pdf]
top |